Micșorați cheia și ștergeți operațiunile nodului pe o grămadă Fibonacci

În acest tutorial, veți afla cum funcționează operațiile de scădere a cheii și ștergerea nodului. De asemenea, veți găsi exemple de lucru ale acestor operații pe o grămadă de fibonacci în C, C ++, Java și Python.

Într-o grămadă de fibonacci, tasta de scădere și nodul de ștergere sunt operații importante. Aceste operațiuni sunt discutate mai jos.

Scăderea unei chei

La scăderea unei operații de cheie, valoarea unei chei este redusă la o valoare mai mică.

Următoarele funcții sunt utilizate pentru reducerea tastei.

Scădere-cheie

  1. Selectați nodul care urmează să fie micșorat, x și schimbați valoarea acestuia la noua valoare k.
  2. Dacă părintele lui x, y, nu este nul și cheia părintelui este mai mare decât cea a k, atunci apelați Cut(x)și Cascading-Cut(y)ulterior.
  3. Dacă tasta x este mai mică decât tasta min, atunci marcați x ca min.

A tăia

  1. Eliminați x din poziția curentă și adăugați-l la lista rădăcină.
  2. Dacă x este marcat, marcați-l ca fiind fals.

Tăiere în cascadă

  1. Dacă părintele lui y nu este nul, urmați pașii următori.
  2. Dacă y nu este marcat, atunci marcați y.
  3. Altfel, sună Cut(y)și Cascading-Cut(parent of y).

Scădere Exemplu cheie

Operațiile de mai sus pot fi înțelese în exemplele de mai jos.

Exemplu: scăderea de la 46 la 15.

  1. Reduceți valoarea 46 la 15.
    Reduceți 46 la 15
  2. Tăiați partea: De la 24 ≠ nillși 15 < its parent, tăiați-o și adăugați-o la lista rădăcină. Partea în cascadă-tăiere: marcați 24. Adăugați 15 la lista rădăcină și marcați 24

Exemplu: scăderea de la 35 la 5

  1. Reduceți valoarea 35 la 5. Reduceți 35 la 5
  2. Partea tăiată: De la 26 ≠ nillși5 , cut it and add it to the root list. Cut 5 and add it to root list
  3. Cascading-Cut part: Since 26 is marked, the flow goes to Cut and Cascading-Cut.
    Cut(26): Cut 26 and add it to the root list and mark it as false. Cut 26 and add it to root list
    Cascading-Cut(24):
    Since the 24 is also marked, again call Cut(24) and Cascading-Cut(7). These operations result in the tree below. Cut 24 and add it to root list
  4. Since 5 < 7, mark 5 as min. Mark 5 as min

Deleting a Node

This process makes use of decrease-key and extract-min operations. The following steps are followed for deleting a node.

  1. Let k be the node to be deleted.
  2. Apply decrease-key operation to decrease the value of k to the lowest possible value (i.e. -∞).
  3. Apply extract-min operation to remove this node.

Python, Java and C/C++ Examples

Python Java C C+
 # Fibonacci Heap in python import math class FibonacciTree: def __init__(self, key): self.key = key self.children = () self.order = 0 def add_at_end(self, t): self.children.append(t) self.order = self.order + 1 class FibonacciHeap: def __init__(self): self.trees = () self.least = None self.count = 0 def insert(self, key): new_tree = FibonacciTree(key) self.trees.append(new_tree) if (self.least is None or key y.key: x, y = y, x x.add_at_end(y) aux(order) = None order = order + 1 aux(order) = x self.least = None for k in aux: if k is not None: self.trees.append(k) if (self.least is None or k.key < self.least.key): self.least = k def floor_log2(x): return math.frexp(x)(1) - 1 fheap = FibonacciHeap() fheap.insert(11) fheap.insert(10) fheap.insert(39) fheap.insert(26) fheap.insert(24) print('Minimum value: ()'.format(fheap.get_min())) print('Minimum value removed: ()'.format(fheap.extract_min()))
 // Operations on Fibonacci Heap in Java class node ( node parent; node left; node right; node child; int degree; boolean mark; int key; public node() ( this.degree = 0; this.mark = false; this.parent = null; this.left = this; this.right = this; this.child = null; this.key = Integer.MAX_VALUE; ) node(int x) ( this(); this.key = x; ) void set_parent(node x) ( this.parent = x; ) node get_parent() ( return this.parent; ) void set_left(node x) ( this.left = x; ) node get_left() ( return this.left; ) void set_right(node x) ( this.right = x; ) node get_right() ( return this.right; ) void set_child(node x) ( this.child = x; ) node get_child() ( return this.child; ) void set_degree(int x) ( this.degree = x; ) int get_degree() ( return this.degree; ) void set_mark(boolean m) ( this.mark = m; ) boolean get_mark() ( return this.mark; ) void set_key(int x) ( this.key = x; ) int get_key() ( return this.key; ) ) public class fibHeap ( node min; int n; boolean trace; node found; public boolean get_trace() ( return trace; ) public void set_trace(boolean t) ( this.trace = t; ) public static fibHeap create_heap() ( return new fibHeap(); ) fibHeap() ( min = null; n = 0; trace = false; ) private void insert(node x) ( if (min == null) ( min = x; x.set_left(min); x.set_right(min); ) else ( x.set_right(min); x.set_left(min.get_left()); min.get_left().set_right(x); min.set_left(x); if (x.get_key() "); temp = temp.get_right(); ) while (temp != c); System.out.print(")"); ) ) public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) ( H3.min = H1.min; if (H1.min != null && H2.min != null) ( node t1 = H1.min.get_left(); node t2 = H2.min.get_left(); H1.min.set_left(t2); t1.set_right(H2.min); H2.min.set_left(t1); t2.set_right(H1.min); ) if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key())) H3.min = H2.min; H3.n = H1.n + H2.n; ) public int find_min() ( return this.min.get_key(); ) private void display_node(node z) ( System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key())); System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key())); System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key())); System.out.println("degree " + z.get_degree()); ) public int extract_min() ( node z = this.min; if (z != null) ( node c = z.get_child(); node k = c, p; if (c != null) ( do ( p = c.get_right(); insert(c); c.set_parent(null); c = p; ) while (c != null && c != k); ) z.get_left().set_right(z.get_right()); z.get_right().set_left(z.get_left()); z.set_child(null); if (z == z.get_right()) this.min = null; else ( this.min = z.get_right(); this.consolidate(); ) this.n -= 1; return z.get_key(); ) return Integer.MAX_VALUE; ) public void consolidate() ( double phi = (1 + Math.sqrt(5)) / 2; int Dofn = (int) (Math.log(this.n) / Math.log(phi)); node() A = new node(Dofn + 1); for (int i = 0; i y.get_key()) ( node temp = x; x = y; y = temp; w = x; ) fib_heap_link(y, x); check = x; A(d) = null; d += 1; ) A(d) = x; w = w.get_right(); ) while (w != null && w != check); this.min = null; for (int i = 0; i <= Dofn; ++i) ( if (A(i) != null) ( insert(A(i)); ) ) ) ) private void fib_heap_link(node y, node x) ( y.get_left().set_right(y.get_right()); y.get_right().set_left(y.get_left()); node p = x.get_child(); if (p == null) ( y.set_right(y); y.set_left(y); ) else ( y.set_right(p); y.set_left(p.get_left()); p.get_left().set_right(y); p.set_left(y); ) y.set_parent(x); x.set_child(y); x.set_degree(x.get_degree() + 1); y.set_mark(false); ) private void find(int key, node c) ( if (found != null || c == null) return; else ( node temp = c; do ( if (key == temp.get_key()) found = temp; else ( node k = temp.get_child(); find(key, k); temp = temp.get_right(); ) ) while (temp != c && found == null); ) ) public node find(int k) ( found = null; find(k, this.min); return found; ) public void decrease_key(int key, int nval) ( node x = find(key); decrease_key(x, nval); ) private void decrease_key(node x, int k) ( if (k> x.get_key()) return; x.set_key(k); node y = x.get_parent(); if (y != null && x.get_key() < y.get_key()) ( cut(x, y); cascading_cut(y); ) if (x.get_key() < min.get_key()) min = x; ) private void cut(node x, node y) ( x.get_right().set_left(x.get_left()); x.get_left().set_right(x.get_right()); y.set_degree(y.get_degree() - 1); x.set_right(null); x.set_left(null); insert(x); x.set_parent(null); x.set_mark(false); ) private void cascading_cut(node y) ( node z = y.get_parent(); if (z != null) ( if (y.get_mark() == false) y.set_mark(true); else ( cut(y, z); cascading_cut(z); ) ) ) public void delete(node x) ( decrease_key(x, Integer.MIN_VALUE); int p = extract_min(); ) public static void main(String() args) ( fibHeap obj = create_heap(); obj.insert(7); obj.insert(26); obj.insert(30); obj.insert(39); obj.insert(10); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); System.out.println(obj.extract_min()); obj.display(); ) )
 // Operations on a Fibonacci heap in C #include #include #include #include typedef struct _NODE ( int key; int degree; struct _NODE *left_sibling; struct _NODE *right_sibling; struct _NODE *parent; struct _NODE *child; bool mark; bool visited; ) NODE; typedef struct fibanocci_heap ( int n; NODE *min; int phi; int degree; ) FIB_HEAP; FIB_HEAP *make_fib_heap(); void insertion(FIB_HEAP *H, NODE *new, int val); NODE *extract_min(FIB_HEAP *H); void consolidate(FIB_HEAP *H); void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x); NODE *find_min_node(FIB_HEAP *H); void decrease_key(FIB_HEAP *H, NODE *node, int key); void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node); void cascading_cut(FIB_HEAP *H, NODE *parent_node); void Delete_Node(FIB_HEAP *H, int dec_key); FIB_HEAP *make_fib_heap() ( FIB_HEAP *H; H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); H->n = 0; H->min = NULL; H->phi = 0; H->degree = 0; return H; ) void new_print_heap(NODE *n) ( NODE *x; for (x = n;; x = x->right_sibling) ( if (x->child == NULL) ( printf("node with no child (%d) ", x->key); ) else ( printf("NODE(%d) with child (%d)", x->key, x->child->key); new_print_heap(x->child); ) if (x->right_sibling == n) ( break; ) ) ) void insertion(FIB_HEAP *H, NODE *new, int val) ( new = (NODE *)malloc(sizeof(NODE)); new->key = val; new->degree = 0; new->mark = false; new->parent = NULL; new->child = NULL; new->visited = false; new->left_sibling = new; new->right_sibling = new; if (H->min == NULL) ( H->min = new; ) else ( H->min->left_sibling->right_sibling = new; new->right_sibling = H->min; new->left_sibling = H->min->left_sibling; H->min->left_sibling = new; if (new->key min->key) ( H->min = new; ) ) (H->n)++; ) NODE *find_min_node(FIB_HEAP *H) ( if (H == NULL) ( printf(" Fibonacci heap not yet created "); return NULL; ) else return H->min; ) FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2) ( FIB_HEAP *Hnew; Hnew = make_fib_heap(); Hnew->min = H1->min; NODE *temp1, *temp2; temp1 = Hnew->min->right_sibling; temp2 = H2->min->left_sibling; Hnew->min->right_sibling->left_sibling = H2->min->left_sibling; Hnew->min->right_sibling = H2->min; H2->min->left_sibling = Hnew->min; temp2->right_sibling = temp1; if ((H1->min == NULL) || (H2->min != NULL && H2->min->key min->key)) Hnew->min = H2->min; Hnew->n = H1->n + H2->n; return Hnew; ) int cal_degree(int n) ( int count = 0; while (n> 0) ( n = n / 2; count++; ) return count; ) void consolidate(FIB_HEAP *H) ( int degree, i, d; degree = cal_degree(H->n); NODE *A(degree), *x, *y, *z; for (i = 0; i min; do ( d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->key> y->key) ( NODE *exchange_help; exchange_help = x; x = y; y = exchange_help; ) if (y == H->min) H->min = x; fib_heap_link(H, y, x); if (y->right_sibling == x) H->min = x; A(d) = NULL; d++; ) A(d) = x; x = x->right_sibling; ) while (x != H->min); H->min = NULL; for (i = 0; i left_sibling = A(i); A(i)->right_sibling = A(i); if (H->min == NULL) ( H->min = A(i); ) else ( H->min->left_sibling->right_sibling = A(i); A(i)->right_sibling = H->min; A(i)->left_sibling = H->min->left_sibling; H->min->left_sibling = A(i); if (A(i)->key min->key) ( H->min = A(i); ) ) if (H->min == NULL) ( H->min = A(i); ) else if (A(i)->key min->key) ( H->min = A(i); ) ) ) ) void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x) ( y->right_sibling->left_sibling = y->left_sibling; y->left_sibling->right_sibling = y->right_sibling; if (x->right_sibling == x) H->min = x; y->left_sibling = y; y->right_sibling = y; y->parent = x; if (x->child == NULL) ( x->child = y; ) y->right_sibling = x->child; y->left_sibling = x->child->left_sibling; x->child->left_sibling->right_sibling = y; x->child->left_sibling = y; if ((y->key) child->key)) x->child = y; (x->degree)++; ) NODE *extract_min(FIB_HEAP *H) ( if (H->min == NULL) printf(" The heap is empty"); else ( NODE *temp = H->min; NODE *pntr; pntr = temp; NODE *x = NULL; if (temp->child != NULL) ( x = temp->child; do ( pntr = x->right_sibling; (H->min->left_sibling)->right_sibling = x; x->right_sibling = H->min; x->left_sibling = H->min->left_sibling; H->min->left_sibling = x; if (x->key min->key) H->min = x; x->parent = NULL; x = pntr; ) while (pntr != temp->child); ) (temp->left_sibling)->right_sibling = temp->right_sibling; (temp->right_sibling)->left_sibling = temp->left_sibling; H->min = temp->right_sibling; if (temp == temp->right_sibling && temp->child == NULL) H->min = NULL; else ( H->min = temp->right_sibling; consolidate(H); ) H->n = H->n - 1; return temp; ) return H->min; ) void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node) ( NODE *temp_parent_check; if (node_to_be_decrease == node_to_be_decrease->right_sibling) parent_node->child = NULL; node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling; node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling; if (node_to_be_decrease == parent_node->child) parent_node->child = node_to_be_decrease->right_sibling; (parent_node->degree)--; node_to_be_decrease->left_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = node_to_be_decrease; H->min->left_sibling->right_sibling = node_to_be_decrease; node_to_be_decrease->right_sibling = H->min; node_to_be_decrease->left_sibling = H->min->left_sibling; H->min->left_sibling = node_to_be_decrease; node_to_be_decrease->parent = NULL; node_to_be_decrease->mark = false; ) void cascading_cut(FIB_HEAP *H, NODE *parent_node) ( NODE *aux; aux = parent_node->parent; if (aux != NULL) ( if (parent_node->mark == false) ( parent_node->mark = true; ) else ( cut(H, parent_node, aux); cascading_cut(H, aux); ) ) ) void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key) ( NODE *parent_node; if (H == NULL) ( printf(" FIbonacci heap not created "); return; ) if (node_to_be_decrease == NULL) ( printf("Node is not in the heap"); ) else ( if (node_to_be_decrease->key key = new_key; parent_node = node_to_be_decrease->parent; if ((parent_node != NULL) && (node_to_be_decrease->key key)) ( printf(" cut called"); cut(H, node_to_be_decrease, parent_node); printf(" cascading cut called"); cascading_cut(H, parent_node); ) if (node_to_be_decrease->key min->key) ( H->min = node_to_be_decrease; ) ) ) ) void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key) ( NODE *find_use = n; NODE *f = NULL; find_use->visited = true; if (find_use->key == key) ( find_use->visited = false; f = find_use; decrease_key(H, f, new_key); ) if (find_use->child != NULL) ( find_node(H, find_use->child, key, new_key); ) if ((find_use->right_sibling->visited != true)) ( find_node(H, find_use->right_sibling, key, new_key); ) find_use->visited = false; ) FIB_HEAP *insertion_procedure() ( FIB_HEAP *temp; int no_of_nodes, ele, i; NODE *new_node; temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); temp = NULL; if (temp == NULL) ( temp = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i min, dec_key, -5000); p = extract_min(H); if (p != NULL) printf(" Node deleted"); else printf(" Node not deleted:some error"); ) int main(int argc, char **argv) ( NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use; FIB_HEAP *heap, *h1, *h2; int operation_no, new_key, dec_key, ele, i, no_of_nodes; heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP)); heap = NULL; while (1) ( printf(" choose below operations 1. Create Fibonacci heap 2. Insert nodes into fibonacci heap 3. Find min 4. Union 5. Extract min 6. Decrease key 7.Delete node 8. print heap 9. exit enter operation_no = "); scanf("%d", &operation_no); switch (operation_no) ( case 1: heap = make_fib_heap(); break; case 2: if (heap == NULL) ( heap = make_fib_heap(); ) printf(" enter number of nodes to be insert = "); scanf("%d", &no_of_nodes); for (i = 1; i key); break; case 4: if (heap == NULL) ( printf(" no FIbonacci heap is created please create fibonacci heap "); break; ) h1 = insertion_procedure(); heap = unionHeap(heap, h1); printf("Unified Heap:"); new_print_heap(heap->min); break; case 5: if (heap == NULL) printf("Fibonacci heap is empty"); else ( extracted_min = extract_min(heap); printf(" min value = %d", extracted_min->key); printf(" Updated heap: "); new_print_heap(heap->min); ) break; case 6: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" node to be decreased = "); scanf("%d", &dec_key); printf(" enter the new key = "); scanf("%d", &new_key); find_use = heap->min; find_node(heap, find_use, dec_key, new_key); printf(" Key decreased- Corresponding heap:"); new_print_heap(heap->min); ) break; case 7: if (heap == NULL) printf("Fibonacci heap is empty"); else ( printf(" Enter node key to be deleted = "); scanf("%d", &dec_key); Delete_Node(heap, dec_key); printf(" Node Deleted- Corresponding heap:"); new_print_heap(heap->min); break; ) case 8: new_print_heap(heap->min); break; case 9: free(new_node); free(heap); exit(0); default: printf("Invalid choice "); ) ) )
 // Operations on a Fibonacci heap in C++ #include #include #include using namespace std; struct node ( int n; int degree; node *parent; node *child; node *left; node *right; char mark; char C; ); class FibonacciHeap ( private: int nH; node *H; public: node *InitializeHeap(); int Fibonnaci_link(node *, node *, node *); node *Create_node(int); node *Insert(node *, node *); node *Union(node *, node *); node *Extract_Min(node *); int Consolidate(node *); int Display(node *); node *Find(node *, int); int Decrease_key(node *, int, int); int Delete_key(node *, int); int Cut(node *, node *, node *); int Cascase_cut(node *, node *); FibonacciHeap() ( H = InitializeHeap(); ) ); node *FibonacciHeap::InitializeHeap() ( node *np; np = NULL; return np; ) node *FibonacciHeap::Create_node(int value) ( node *x = new node; x->n = value; return x; ) node *FibonacciHeap::Insert(node *H, node *x) ( x->degree = 0; x->parent = NULL; x->child = NULL; x->left = x; x->right = x; x->mark = 'F'; x->C = 'N'; if (H != NULL) ( (H->left)->right = x; x->right = H; x->left = H->left; H->left = x; if (x->n n) H = x; ) else ( H = x; ) nH = nH + 1; return H; ) int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z) ( (y->left)->right = y->right; (y->right)->left = y->left; if (z->right == z) H1 = z; y->left = y; y->right = y; y->parent = z; if (z->child == NULL) z->child = y; y->right = z->child; y->left = (z->child)->left; ((z->child)->left)->right = y; (z->child)->left = y; if (y->n child)->n) z->child = y; z->degree++; ) node *FibonacciHeap::Union(node *H1, node *H2) ( node *np; node *H = InitializeHeap(); H = H1; (H->left)->right = H2; (H2->left)->right = H; np = H->left; H->left = H2->left; H2->left = np; return H; ) int FibonacciHeap::Display(node *H) ( node *p = H; if (p == NULL) ( cout << "The Heap is Empty" << endl; return 0; ) cout << "The root nodes of Heap are: " << endl; do ( cout  right; if (p != H) ( cout <"; ) ) while (p != H && p->right != NULL); cout <  child != NULL) x = z->child; if (x != NULL) ( ptr = x; do ( np = x->right; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; if (x->n n) H1 = x; x->parent = NULL; x = np; ) while (np != ptr); ) (z->left)->right = z->right; (z->right)->left = z->left; H1 = z->right; if (z == z->right && z->child == NULL) H = NULL; else ( H1 = z->right; Consolidate(H1); ) nH = nH - 1; return p; ) int FibonacciHeap::Consolidate(node *H1) ( int d, i; float f = (log(nH)) / (log(2)); int D = f; node *A(D); for (i = 0; i right; d = x->degree; while (A(d) != NULL) ( y = A(d); if (x->n> y->n) ( np = x; x = y; y = np; ) if (y == H1) H1 = x; Fibonnaci_link(H1, y, x); if (x->right == x) H1 = x; A(d) = NULL; d = d + 1; ) A(d) = x; x = x->right; ) while (x != H1); H = NULL; for (int j = 0; j left = A(j); A(j)->right = A(j); if (H != NULL) ( (H->left)->right = A(j); A(j)->right = H; A(j)->left = H->left; H->left = A(j); if (A(j)->n n) H = A(j); ) else ( H = A(j); ) if (H == NULL) H = A(j); else if (A(j)->n n) H = A(j); ) ) ) int FibonacciHeap::Decrease_key(node *H1, int x, int k) ( node *y; if (H1 == NULL) ( cout << "The Heap is Empty" << endl; return 0; ) node *ptr = Find(H1, x); if (ptr == NULL) ( cout << "Node not found in the Heap"  parent; if (y != NULL && ptr->n n) ( Cut(H1, ptr, y); Cascase_cut(H1, y); ) if (ptr->n n) H = ptr; return 0; ) int FibonacciHeap::Cut(node *H1, node *x, node *y) ( if (x == x->right) y->child = NULL; (x->left)->right = x->right; (x->right)->left = x->left; if (x == y->child) y->child = x->right; y->degree = y->degree - 1; x->right = x; x->left = x; (H1->left)->right = x; x->right = H1; x->left = H1->left; H1->left = x; x->parent = NULL; x->mark = 'F'; ) int FibonacciHeap::Cascase_cut(node *H1, node *y) ( node *z = y->parent; if (z != NULL) ( if (y->mark == 'F') ( y->mark = 'T'; ) else ( Cut(H1, y, z); Cascase_cut(H1, z); ) ) ) node *FibonacciHeap::Find(node *H, int k) ( node *x = H; x->C = 'Y'; node *p = NULL; if (x->n == k) ( p = x; x->C = 'N'; return p; ) if (p == NULL) ( if (x->child != NULL) p = Find(x->child, k); if ((x->right)->C != 'Y') p = Find(x->right, k); ) x->C = 'N'; return p; ) int FibonacciHeap::Delete_key(node *H1, int k) ( node *np = NULL; int t; t = Decrease_key(H1, k, -5000); if (!t) np = Extract_Min(H); if (np != NULL) cout << "Key Deleted" << endl; else cout << "Key not Deleted" << endl; return 0; ) int main() ( int n, m, l; FibonacciHeap fh; node *p; node *H; H = fh.InitializeHeap(); p = fh.Create_node(7); H = fh.Insert(H, p); p = fh.Create_node(17); H = fh.Insert(H, p); p = fh.Create_node(26); H = fh.Insert(H, p); p = fh.Create_node(1); H = fh.Insert(H, p); fh.Display(H); p = fh.Extract_Min(H); if (p != NULL) cout << "The node with minimum key: "    

Complexities

Decrease Key O(1)
Delete Node O(log n)

Articole interesante...