În acest tutorial, veți afla cum se poate introduce un nou nod într-un copac roșu-negru. De asemenea, veți găsi exemple de lucru de inserții efectuate pe un copac roșu-negru în C, C ++, Java și Python.
Arborele roșu-negru este un arbore de căutare binar auto-echilibrat în care fiecare nod conține un bit suplimentar pentru a indica culoarea nodului, fie roșu, fie negru.
Înainte de a citi acest articol, vă rugăm să consultați articolul despre copacul roșu-negru.
În timp ce introduceți un nod nou, noul nod este întotdeauna inserat ca nod RED. După inserarea unui nou nod, dacă arborele încalcă proprietățile arborelui roșu-negru, atunci efectuăm următoarele operații.
- Recolorați
- Rotație
Algoritm pentru a insera un nod nou
Următorii pași sunt urmați pentru inserarea unui element nou într-un copac roșu-negru:
- Be
newNode
:Nod nou
- Să fie y frunza (adică
NIL
) și săx
fie rădăcina copacului. Noul nod este inserat în arborele următor.Arborele inițial
- Verificați dacă arborele este gol (adică dacă
x
esteNIL
). Dacă da, introduceținewNode
ca nod rădăcină și colorați-l în negru. - Altfel, repetați pașii care urmează pașii până când
NIL
se atinge frunza ( ).- Comparați
newKey
curootKey
. - Dacă
newKey
este mai mare decâtrootKey
, traversați subarborele din dreapta. - Altfel traversează subarborele din stânga.
Calea care duce la nodul în care urmează să fie inserat noul nod
- Comparați
- Atribuiți părintele frunzei ca părinte al
newNode
. - În cazul în care
leafKey
este mai mare decâtnewKey
, facenewNode
carightChild
. - Altfel, face
newNode
caleftChild
.Nod nou introdus
- Alocați
NULL
la stânga șirightChild
anewNode
. - Atribuiți culoarea ROȘU la
newNode
.Setați culoarea roșu newNode și atribuiți nul copiilor
- Apelați algoritmul InsertFix pentru a menține proprietatea copacului roșu-negru dacă este încălcat.
De ce nodurile nou inserate sunt întotdeauna roșii într-un copac roșu-negru?
Acest lucru se datorează faptului că inserarea unui nod roșu nu încalcă proprietatea adâncimii unui copac roșu-negru.
Dacă atașați un nod roșu la un nod roșu, atunci regula este încălcată, dar este mai ușor să remediați această problemă decât problema introdusă prin încălcarea proprietății de adâncime.
Algoritm pentru menținerea proprietății roșu-negru după inserare
Acest algoritm este utilizat pentru menținerea proprietății unui copac roșu-negru dacă inserarea unui nou nod încalcă această proprietate.
- Faceți următoarele până când părintele lui
newNode
p
este ROȘU. - Dacă
p
este copilul stâng algrandParent
gP
luinewNode
, faceți următoarele.
Cazul I:- Dacă culoarea copilului potrivit al lui
gP
ofnewNode
este ROȘU, setați culoarea atât a copiilor lui,gP
cât și a NEGRULUI, precum și a culoriigP
ca ROȘU.Schimbarea culorii
- Atribuiți
gP
lanewNode
.Reatribuirea noului caz Node
-II: - (Înainte de a trece la acest pas, în timp ce bucla este bifată. Dacă condițiile nu sunt îndeplinite, bucla este întreruptă.)
Altfel dacănewNode
este copilul potrivit dep
atunci, atribuițip
lanewNode
.Atribuirea părintelui newNode ca newNode
- Stânga-Rotire
newNode
.Rotire stânga
Case-III: - (Înainte de a trece la acest pas, în timp ce bucla este bifată. Dacă condițiile nu sunt îndeplinite, bucla este întreruptă.)
Setați culoareap
ca NEGRU și culoareagP
ca RED.Schimbarea culorii
- Rotire dreapta
gP
.Rotire dreapta
- Dacă culoarea copilului potrivit al lui
- Altfel, faceți următoarele.
- În cazul în care culoarea copilului din stânga
gP
luiz
este roșu, setați culoarea atât a copiilor degP
la NEGRU, cât și a culorii degP
la ROȘU. - Atribuiți
gP
lanewNode
. - Altfel , dacă
newNode
este copilul stâng alp
apoi, atribuitip
lanewNode
și dreapta RotirenewNode
. - Setați culoarea la
p
fel de BLACK și culoarea lagP
fel ca RED. - Stânga-Rotire
gP
.
- În cazul în care culoarea copilului din stânga
- (Acest pas se efectuează după ieșirea din bucla while.)
Setați rădăcina arborelui ca NEGRU.Setați culoarea rădăcinii negru
Arborele final arată astfel:

Exemple Python, Java și C / C ++
Python Java C C ++# Implementing Red-Black Tree in Python import sys # Node creation class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1 class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # Preorder def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # Inorder def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right) # Postorder def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # Search the tree def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key < node.item: return self.search_tree_helper(node.left, key) return self.search_tree_helper(node.right, key) # Balance the tree after insertion def fix_insert(self, k): while k.parent.color == 1: if k.parent == k.parent.parent.right: u = k.parent.parent.left if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.left: k = k.parent self.right_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.left_rotate(k.parent.parent) else: u = k.parent.parent.right if u.color == 1: u.color = 0 k.parent.color = 0 k.parent.parent.color = 1 k = k.parent.parent else: if k == k.parent.right: k = k.parent self.left_rotate(k) k.parent.color = 0 k.parent.parent.color = 1 self.right_rotate(k.parent.parent) if k == self.root: break self.root.color = 0 # Printing the tree def __print_helper(self, node, indent, last): if node != self.TNULL: sys.stdout.write(indent) if last: sys.stdout.write("R----") indent += " " else: sys.stdout.write("L----") indent += "| " s_color = "RED" if node.color == 1 else "BLACK" print(str(node.item) + "(" + s_color + ")") self.__print_helper(node.left, indent, False) self.__print_helper(node.right, indent, True) def preorder(self): self.pre_order_helper(self.root) def inorder(self): self.in_order_helper(self.root) def postorder(self): self.post_order_helper(self.root) def searchTree(self, k): return self.search_tree_helper(self.root, k) def minimum(self, node): while node.left != self.TNULL: node = node.left return node def maximum(self, node): while node.right != self.TNULL: node = node.right return node def successor(self, x): if x.right != self.TNULL: return self.minimum(x.right) y = x.parent while y != self.TNULL and x == y.right: x = y y = y.parent return y def predecessor(self, x): if (x.left != self.TNULL): return self.maximum(x.left) y = x.parent while y != self.TNULL and x == y.left: x = y y = y.parent return y def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.TNULL: y.left.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): y = x.left x.left = y.right if y.right != self.TNULL: y.right.parent = x y.parent = x.parent if x.parent == None: self.root = y elif x == x.parent.right: x.parent.right = y else: x.parent.left = y y.right = x x.parent = y def insert(self, key): node = Node(key) node.parent = None node.item = key node.left = self.TNULL node.right = self.TNULL node.color = 1 y = None x = self.root while x != self.TNULL: y = x if node.item < x.item: x = x.left else: x = x.right node.parent = y if y == None: self.root = node elif node.item < y.item: y.left = node else: y.right = node if node.parent == None: node.color = 0 return if node.parent.parent == None: return self.fix_insert(node) def get_root(self): return self.root def print_tree(self): self.__print_helper(self.root, "", True) if __name__ == "__main__": bst = RedBlackTree() bst.insert(55) bst.insert(40) bst.insert(65) bst.insert(60) bst.insert(75) bst.insert(57) bst.print_tree()
// Implementing Red-Black Tree in Java class Node ( int data; Node parent; Node left; Node right; int color; ) public class RedBlackTree ( private Node root; private Node TNULL; // Preorder private void preOrderHelper(Node node) ( if (node != TNULL) ( System.out.print(node.data + " "); preOrderHelper(node.left); preOrderHelper(node.right); ) ) // Inorder private void inOrderHelper(Node node) ( if (node != TNULL) ( inOrderHelper(node.left); System.out.print(node.data + " "); inOrderHelper(node.right); ) ) // Post order private void postOrderHelper(Node node) ( if (node != TNULL) ( postOrderHelper(node.left); postOrderHelper(node.right); System.out.print(node.data + " "); ) ) // Search the tree private Node searchTreeHelper(Node node, int key) ( if (node == TNULL || key == node.data) ( return node; ) if (key < node.data) ( return searchTreeHelper(node.left, key); ) return searchTreeHelper(node.right, key); ) // Balance the tree after deletion of a node private void fixDelete(Node x) ( Node s; while (x != root && x.color == 0) ( if (x == x.parent.left) ( s = x.parent.right; if (s.color == 1) ( s.color = 0; x.parent.color = 1; leftRotate(x.parent); s = x.parent.right; ) if (s.left.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.right.color == 0) ( s.left.color = 0; s.color = 1; rightRotate(s); s = x.parent.right; ) s.color = x.parent.color; x.parent.color = 0; s.right.color = 0; leftRotate(x.parent); x = root; ) ) else ( s = x.parent.left; if (s.color == 1) ( s.color = 0; x.parent.color = 1; rightRotate(x.parent); s = x.parent.left; ) if (s.right.color == 0 && s.right.color == 0) ( s.color = 1; x = x.parent; ) else ( if (s.left.color == 0) ( s.right.color = 0; s.color = 1; leftRotate(s); s = x.parent.left; ) s.color = x.parent.color; x.parent.color = 0; s.left.color = 0; rightRotate(x.parent); x = root; ) ) ) x.color = 0; ) private void rbTransplant(Node u, Node v) ( if (u.parent == null) ( root = v; ) else if (u == u.parent.left) ( u.parent.left = v; ) else ( u.parent.right = v; ) v.parent = u.parent; ) // Balance the node after insertion private void fixInsert(Node k) ( Node u; while (k.parent.color == 1) ( if (k.parent == k.parent.parent.right) ( u = k.parent.parent.left; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.left) ( k = k.parent; rightRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; leftRotate(k.parent.parent); ) ) else ( u = k.parent.parent.right; if (u.color == 1) ( u.color = 0; k.parent.color = 0; k.parent.parent.color = 1; k = k.parent.parent; ) else ( if (k == k.parent.right) ( k = k.parent; leftRotate(k); ) k.parent.color = 0; k.parent.parent.color = 1; rightRotate(k.parent.parent); ) ) if (k == root) ( break; ) ) root.color = 0; ) private void printHelper(Node root, String indent, boolean last) ( if (root != TNULL) ( System.out.print(indent); if (last) ( System.out.print("R----"); indent += " "; ) else ( System.out.print("L----"); indent += "| "; ) String sColor = root.color == 1 ? "RED" : "BLACK"; System.out.println(root.data + "(" + sColor + ")"); printHelper(root.left, indent, false); printHelper(root.right, indent, true); ) ) public RedBlackTree() ( TNULL = new Node(); TNULL.color = 0; TNULL.left = null; TNULL.right = null; root = TNULL; ) public void preorder() ( preOrderHelper(this.root); ) public void inorder() ( inOrderHelper(this.root); ) public void postorder() ( postOrderHelper(this.root); ) public Node searchTree(int k) ( return searchTreeHelper(this.root, k); ) public Node minimum(Node node) ( while (node.left != TNULL) ( node = node.left; ) return node; ) public Node maximum(Node node) ( while (node.right != TNULL) ( node = node.right; ) return node; ) public Node successor(Node x) ( if (x.right != TNULL) ( return minimum(x.right); ) Node y = x.parent; while (y != TNULL && x == y.right) ( x = y; y = y.parent; ) return y; ) public Node predecessor(Node x) ( if (x.left != TNULL) ( return maximum(x.left); ) Node y = x.parent; while (y != TNULL && x == y.left) ( x = y; y = y.parent; ) return y; ) public void leftRotate(Node x) ( Node y = x.right; x.right = y.left; if (y.left != TNULL) ( y.left.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.left) ( x.parent.left = y; ) else ( x.parent.right = y; ) y.left = x; x.parent = y; ) public void rightRotate(Node x) ( Node y = x.left; x.left = y.right; if (y.right != TNULL) ( y.right.parent = x; ) y.parent = x.parent; if (x.parent == null) ( this.root = y; ) else if (x == x.parent.right) ( x.parent.right = y; ) else ( x.parent.left = y; ) y.right = x; x.parent = y; ) public void insert(int key) ( Node node = new Node(); node.parent = null; node.data = key; node.left = TNULL; node.right = TNULL; node.color = 1; Node y = null; Node x = this.root; while (x != TNULL) ( y = x; if (node.data < x.data) ( x = x.left; ) else ( x = x.right; ) ) node.parent = y; if (y == null) ( root = node; ) else if (node.data < y.data) ( y.left = node; ) else ( y.right = node; ) if (node.parent == null) ( node.color = 0; return; ) if (node.parent.parent == null) ( return; ) fixInsert(node); ) public Node getRoot() ( return this.root; ) public void printTree() ( printHelper(this.root, "", true); ) public static void main(String() args) ( RedBlackTree bst = new RedBlackTree(); bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); ) )
// Implementing Red-Black Tree in C #include #include enum nodeColor ( RED, BLACK ); struct rbNode ( int data, color; struct rbNode *link(2); ); struct rbNode *root = NULL; // Create a red-black tree struct rbNode *createNode(int data) ( struct rbNode *newnode; newnode = (struct rbNode *)malloc(sizeof(struct rbNode)); newnode->data = data; newnode->color = RED; newnode->link(0) = newnode->link(1) = NULL; return newnode; ) // Insert an node void insertion(int data) ( struct rbNode *stack(98), *ptr, *newnode, *xPtr, *yPtr; int dir(98), ht = 0, index; ptr = root; if (!root) ( root = createNode(data); return; ) stack(ht) = root; dir(ht++) = 0; while (ptr != NULL) ( if (ptr->data == data) ( printf("Duplicates Not Allowed!!"); return; ) index = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; ptr = ptr->link(index); dir(ht++) = index; ) stack(ht - 1)->link(index) = newnode = createNode(data); while ((ht>= 3) && (stack(ht - 1)->color == RED)) ( if (dir(ht - 2) == 0) ( yPtr = stack(ht - 2)->link(1); if (yPtr != NULL && yPtr->color == RED) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 0) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(1); xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; stack(ht - 2)->link(0) = yPtr; ) xPtr = stack(ht - 2); xPtr->color = RED; yPtr->color = BLACK; xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) else ( yPtr = stack(ht - 2)->link(0); if ((yPtr != NULL) && (yPtr->color == RED)) ( stack(ht - 2)->color = RED; stack(ht - 1)->color = yPtr->color = BLACK; ht = ht - 2; ) else ( if (dir(ht - 1) == 1) ( yPtr = stack(ht - 1); ) else ( xPtr = stack(ht - 1); yPtr = xPtr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = xPtr; stack(ht - 2)->link(1) = yPtr; ) xPtr = stack(ht - 2); yPtr->color = BLACK; xPtr->color = RED; xPtr->link(1) = yPtr->link(0); yPtr->link(0) = xPtr; if (xPtr == root) ( root = yPtr; ) else ( stack(ht - 3)->link(dir(ht - 3)) = yPtr; ) break; ) ) ) root->color = BLACK; ) // Delete a node void deletion(int data) ( struct rbNode *stack(98), *ptr, *xPtr, *yPtr; struct rbNode *pPtr, *qPtr, *rPtr; int dir(98), ht = 0, diff, i; enum nodeColor color; if (!root) ( printf("Tree not available"); return; ) ptr = root; while (ptr != NULL) ( if ((data - ptr->data) == 0) break; diff = (data - ptr->data)> 0 ? 1 : 0; stack(ht) = ptr; dir(ht++) = diff; ptr = ptr->link(diff); ) if (ptr->link(1) == NULL) ( if ((ptr == root) && (ptr->link(0) == NULL)) ( free(ptr); root = NULL; ) else if (ptr == root) ( root = ptr->link(0); free(ptr); ) else ( stack(ht - 1)->link(dir(ht - 1)) = ptr->link(0); ) ) else ( xPtr = ptr->link(1); if (xPtr->link(0) == NULL) ( xPtr->link(0) = ptr->link(0); color = xPtr->color; xPtr->color = ptr->color; ptr->color = color; if (ptr == root) ( root = xPtr; ) else ( stack(ht - 1)->link(dir(ht - 1)) = xPtr; ) dir(ht) = 1; stack(ht++) = xPtr; ) else ( i = ht++; while (1) ( dir(ht) = 0; stack(ht++) = xPtr; yPtr = xPtr->link(0); if (!yPtr->link(0)) break; xPtr = yPtr; ) dir(i) = 1; stack(i) = yPtr; if (i> 0) stack(i - 1)->link(dir(i - 1)) = yPtr; yPtr->link(0) = ptr->link(0); xPtr->link(0) = yPtr->link(1); yPtr->link(1) = ptr->link(1); if (ptr == root) ( root = yPtr; ) color = yPtr->color; yPtr->color = ptr->color; ptr->color = color; ) ) if (ht color == BLACK) ( while (1) ( pPtr = stack(ht - 1)->link(dir(ht - 1)); if (pPtr && pPtr->color == RED) ( pPtr->color = BLACK; break; ) if (ht link(1); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 0; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(1); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(1) || rPtr->link(1)->color == BLACK) ( qPtr = rPtr->link(0); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(0) = qPtr->link(1); qPtr->link(1) = rPtr; rPtr = stack(ht - 1)->link(1) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(1)->color = BLACK; stack(ht - 1)->link(1) = rPtr->link(0); rPtr->link(0) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) else ( rPtr = stack(ht - 1)->link(0); if (!rPtr) break; if (rPtr->color == RED) ( stack(ht - 1)->color = RED; rPtr->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) dir(ht) = 1; stack(ht) = stack(ht - 1); stack(ht - 1) = rPtr; ht++; rPtr = stack(ht - 1)->link(0); ) if ((!rPtr->link(0) || rPtr->link(0)->color == BLACK) && (!rPtr->link(1) || rPtr->link(1)->color == BLACK)) ( rPtr->color = RED; ) else ( if (!rPtr->link(0) || rPtr->link(0)->color == BLACK) ( qPtr = rPtr->link(1); rPtr->color = RED; qPtr->color = BLACK; rPtr->link(1) = qPtr->link(0); qPtr->link(0) = rPtr; rPtr = stack(ht - 1)->link(0) = qPtr; ) rPtr->color = stack(ht - 1)->color; stack(ht - 1)->color = BLACK; rPtr->link(0)->color = BLACK; stack(ht - 1)->link(0) = rPtr->link(1); rPtr->link(1) = stack(ht - 1); if (stack(ht - 1) == root) ( root = rPtr; ) else ( stack(ht - 2)->link(dir(ht - 2)) = rPtr; ) break; ) ) ht--; ) ) ) // Print the inorder traversal of the tree void inorderTraversal(struct rbNode *node) ( if (node) ( inorderTraversal(node->link(0)); printf("%d ", node->data); inorderTraversal(node->link(1)); ) return; ) // Driver code int main() ( int ch, data; while (1) ( printf("1. Insertion 2. Deletion"); printf("3. Traverse 4. Exit"); printf("Enter your choice:"); scanf("%d", &ch); switch (ch) ( case 1: printf("Enter the element to insert:"); scanf("%d", &data); insertion(data); break; case 2: printf("Enter the element to delete:"); scanf("%d", &data); deletion(data); break; case 3: inorderTraversal(root); printf(""); break; case 4: exit(0); default: printf("Not available"); break; ) printf(""); ) return 0; )
// Implementing Red-Black Tree in C++ #include using namespace std; struct Node ( int data; Node *parent; Node *left; Node *right; int color; ); typedef Node *NodePtr; class RedBlackTree ( private: NodePtr root; NodePtr TNULL; void initializeNULLNode(NodePtr node, NodePtr parent) ( node->data = 0; node->parent = parent; node->left = nullptr; node->right = nullptr; node->color = 0; ) // Preorder void preOrderHelper(NodePtr node) ( if (node != TNULL) ( cout right); ) ) // Inorder void inOrderHelper(NodePtr node) ( if (node != TNULL) ( inOrderHelper(node->left); cout left); postOrderHelper(node->right); cout left, key); ) return searchTreeHelper(node->right, key); ) // For balancing the tree after deletion void deleteFix(NodePtr x) ( NodePtr s; while (x != root && x->color == 0) ( if (x == x->parent->left) ( s = x->parent->right; if (s->color == 1) ( s->color = 0; x->parent->color = 1; leftRotate(x->parent); s = x->parent->right; ) if (s->left->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->right->color == 0) ( s->left->color = 0; s->color = 1; rightRotate(s); s = x->parent->right; ) s->color = x->parent->color; x->parent->color = 0; s->right->color = 0; leftRotate(x->parent); x = root; ) ) else ( s = x->parent->left; if (s->color == 1) ( s->color = 0; x->parent->color = 1; rightRotate(x->parent); s = x->parent->left; ) if (s->right->color == 0 && s->right->color == 0) ( s->color = 1; x = x->parent; ) else ( if (s->left->color == 0) ( s->right->color = 0; s->color = 1; leftRotate(s); s = x->parent->left; ) s->color = x->parent->color; x->parent->color = 0; s->left->color = 0; rightRotate(x->parent); x = root; ) ) ) x->color = 0; ) void rbTransplant(NodePtr u, NodePtr v) ( if (u->parent == nullptr) ( root = v; ) else if (u == u->parent->left) ( u->parent->left = v; ) else ( u->parent->right = v; ) v->parent = u->parent; ) void deleteNodeHelper(NodePtr node, int key) ( NodePtr z = TNULL; NodePtr x, y; while (node != TNULL) ( if (node->data == key) ( z = node; ) if (node->data right; ) else ( node = node->left; ) ) if (z == TNULL) ( cout << "Key not found in the tree" left == TNULL) ( x = z->right; rbTransplant(z, z->right); ) else if (z->right == TNULL) ( x = z->left; rbTransplant(z, z->left); ) else ( y = minimum(z->right); y_original_color = y->color; x = y->right; if (y->parent == z) ( x->parent = y; ) else ( rbTransplant(y, y->right); y->right = z->right; y->right->parent = y; ) rbTransplant(z, y); y->left = z->left; y->left->parent = y; y->color = z->color; ) delete z; if (y_original_color == 0) ( deleteFix(x); ) ) // For balancing the tree after insertion void insertFix(NodePtr k) ( NodePtr u; while (k->parent->color == 1) ( if (k->parent == k->parent->parent->right) ( u = k->parent->parent->left; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->left) ( k = k->parent; rightRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; leftRotate(k->parent->parent); ) ) else ( u = k->parent->parent->right; if (u->color == 1) ( u->color = 0; k->parent->color = 0; k->parent->parent->color = 1; k = k->parent->parent; ) else ( if (k == k->parent->right) ( k = k->parent; leftRotate(k); ) k->parent->color = 0; k->parent->parent->color = 1; rightRotate(k->parent->parent); ) ) if (k == root) ( break; ) ) root->color = 0; ) void printHelper(NodePtr root, string indent, bool last) ( if (root != TNULL) ( cout << indent; if (last) ( cout << "R----"; indent += " "; ) else ( cout right, indent, true); ) ) public: RedBlackTree() ( TNULL = new Node; TNULL->color = 0; TNULL->left = nullptr; TNULL->right = nullptr; root = TNULL; ) void preorder() ( preOrderHelper(this->root); ) void inorder() ( inOrderHelper(this->root); ) void postorder() ( postOrderHelper(this->root); ) NodePtr searchTree(int k) ( return searchTreeHelper(this->root, k); ) NodePtr minimum(NodePtr node) ( while (node->left != TNULL) ( node = node->left; ) return node; ) NodePtr maximum(NodePtr node) ( while (node->right != TNULL) ( node = node->right; ) return node; ) NodePtr successor(NodePtr x) ( if (x->right != TNULL) ( return minimum(x->right); ) NodePtr y = x->parent; while (y != TNULL && x == y->right) ( x = y; y = y->parent; ) return y; ) NodePtr predecessor(NodePtr x) ( if (x->left != TNULL) ( return maximum(x->left); ) NodePtr y = x->parent; while (y != TNULL && x == y->left) ( x = y; y = y->parent; ) return y; ) void leftRotate(NodePtr x) ( NodePtr y = x->right; x->right = y->left; if (y->left != TNULL) ( y->left->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->left) ( x->parent->left = y; ) else ( x->parent->right = y; ) y->left = x; x->parent = y; ) void rightRotate(NodePtr x) ( NodePtr y = x->left; x->left = y->right; if (y->right != TNULL) ( y->right->parent = x; ) y->parent = x->parent; if (x->parent == nullptr) ( this->root = y; ) else if (x == x->parent->right) ( x->parent->right = y; ) else ( x->parent->left = y; ) y->right = x; x->parent = y; ) // Inserting a node void insert(int key) ( NodePtr node = new Node; node->parent = nullptr; node->data = key; node->left = TNULL; node->right = TNULL; node->color = 1; NodePtr y = nullptr; NodePtr x = this->root; while (x != TNULL) ( y = x; if (node->data data) ( x = x->left; ) else ( x = x->right; ) ) node->parent = y; if (y == nullptr) ( root = node; ) else if (node->data data) ( y->left = node; ) else ( y->right = node; ) if (node->parent == nullptr) ( node->color = 0; return; ) if (node->parent->parent == nullptr) ( return; ) insertFix(node); ) NodePtr getRoot() ( return this->root; ) void deleteNode(int data) ( deleteNodeHelper(this->root, data); ) void printTree() ( if (root) ( printHelper(this->root, "", true); ) ) ); int main() ( RedBlackTree bst; bst.insert(55); bst.insert(40); bst.insert(65); bst.insert(60); bst.insert(75); bst.insert(57); bst.printTree(); cout << endl << "After deleting" << endl; bst.deleteNode(40); bst.printTree(); )